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ABSTRACT 

 

This thesis focuses on the reliability modeling of metal interconnects under time-

dependent stress. Whereas most existing reliability models are based upon the assumption that 

stress is constant throughout the useful life of a system, this thesis considers the more general 

and more realistic situation where the stress is time-dependent. In this work the stress is defined 

by temperature and current density variables. It is assumed that the Cumulative Density Function 

(CDF) is characterized by a single stress parameter that incorporates all stress-dependent 

variables. A closed-form expression that can be used to calculate the CDF under time-varying 

stress is presented and this can be used to determine the corresponding Median Time to Failure 

(MTF). A single parameter which can be represented as a real number is used to incorporate the 

total effects of the stress history making this approach applicable for dynamic power/thermal 

management algorithms. 

A reliability model that includes the effects of thermal gradient stress in the presence of 

temperature and current stress is also introduced. With these models, temperature measurement 

accuracy requirements are developed that are necessary if power/thermal management circuits 

are to be successful in achieving 10% accuracy in the MTF. Incorporation of a time-dependent 

stress model that incorporates the user-dependent electrical and thermal stress history in the 

power/thermal management module of a large integrated circuit offers potential for significantly 

improving system performance while maintaining a target reliability throughout the operating 

life of the integrated circuit or for improving the reliability when operated at a user-determined 

stress level. 



www.manaraa.com

1 

 

 

CHAPTER 1 -  INTRODUCTION 

 

Electromigration in integrated circuit metallization is of considerable importance in 

today’s microelectronics industry. This decades-old problem which passes from technology node 

to technology node is a major contributor to the limited lifetime of integrated circuits and the 

associated reduction in reliability. It can be attributed to pressure on semiconductor 

manufacturers to set maximum current density limits at a level that allows designers to minimize 

the area and parasitic capacitances in metal interconnects. The resultant high current density 

creates drift in metal atoms that ultimately causes the interconnects to fail due to mass transport 

of atoms comprising the interconnect. This mass transport is  due to momentum transfer between 

conducting electrons and metal atoms. In extreme situations, electromigration (EM) causes open 

circuits by creating voids in interconnects or creates short circuits due to hillocks bridging two 

conductors operating at different voltage levels though an interconnect effectively fails before 

the extreme open-circuit or short-circuit conditions occur [1].  

Many papers have been written on modeling electromigration in interconnects in 

integrated circuits since the seminal work of Black in 1967 [2] and 1969 [3].   In his work, Black 

predicted the Mean Time to Failure (or the Median Time to Failure) in interconnects and the 

mathematical equation that characterizes this statistic is widely referred to as Black’s equation.  

Black’s equation which was obtained from experimental results validated by numerical analysis 

in [4]. Alam and coworkers [5] used the best estimates of material parameters and an analytical 

model to compare electromigration lifetimes of Al and Cu dual damascene interconnect lines. 

The line scaling effect on EM reliability was investigated using three different line widths by 

Pyun [6]. In this work, EM lifetimes were found to be similar with intrinsic failures caused by 
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void formation in the line trench driven by interfacial mass transport. Also using Black’s 

equation, CDF plots were shown. A generalized bimodal lognormal distribution model was 

introduced by Filippi [7]. All of the work [8-9] on MTF focused on time independent stress.  But 

the useful life of an integrated circuit depends strongly upon the level of stress that is applied to 

the device. This stress is usually time and temperature dependent. 

In this thesis a reliability model for electromigration-induced failure in metal 

interconnects under time-dependent stress is introduced. In contrast to existing reliability models 

that are based upon the assumption that stress is constant throughout the useful life of a system, 

this model includes provisions for the  more realistic situation where both thermal stress and 

current stress are time-dependent. A single parameter which can be represented as a real number 

is used to incorporate the total effects of the stress history of a device making this approach 

applicable for dynamic power/thermal management algorithms.  

Electromigration will probabilistically result in failure of interconnects within the useful 

life of an integrated circuit if the drift rate of metal atoms in the interconneces is too large. Local 

power dissipation variations, in part attributable to joule heating, produce thermal gradients. 

Thermal gradients cause degradation in interconnects through thermomigration (TM). Although, 

the magnitude of TM flux is much smaller than EM flux, thermal gradients in the presence of 

high current densities significantly degrade the reliability of interconnects [10], [11].  Though 

many authors express concern about the effects of thermal gradients on the reliability of 

interconnects, there are limited research results in the literature that focus on the effects of 

thermal gradients on electromigration. Large currents also cause non uniform joule heating in 

interconnects which produce thermal gradients on the semiconductor die. These thermal 

gradients induce thermomigration (TM) which enhances electromigration (EM). The sleep 
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modes of select  functional blocks in high performance chips cause significant temperature 

gradients on the substrate.  In [12] it has been reported that thermal variations of 40°C across a 

die can exist in a high-performance microprocessor design and these large thermal variations 

cause large thermal gradients. Power reduction techniques such as dynamic power management 

[13] and clock gating can result in large thermal gradients. With circuits moving toward higher 

speeds with clock frequencies in the GHz range and beyond, the magnitude of thermal gradients 

in the substrate are projected to increase further. In addition, as minimum feature sizes  shrink 

further, the topmost metal layers that carry global signals get closer to the substrate [14]. As a 

result, the effect of the non-uniform substrate temperature on the interconnect thermal profile 

becomes more critical.  

Temperature has an important effect on the circuit performance and reliability [15]. 

Neglecting thermal gradients in the median time to failure calculation can introduce major errors. 

An empirical reliability model for electromigration-induced failure in metal interconnects under 

thermal, electrical, and thermal gradient stress is introduced in this work. Based upon the  limited 

reported measurements on static thermal gradient stress that are available, this  model 

incorporates thermal gradient stress into the probability density function of the failure time, tF. 

With this model, temperature measurement accuracy and temperature gradient measurement 

accuracy requirements for multi-site on-chip sensors that can be used in power/thermal 

management algorithms are developed. 
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CHAPTER 2 - RELIEABILITY MODELING OF METAL INTERCONNECT WITH 

TIME CONSTANT ELECTRICAL AND THERMAL STRESS 

 

A reliability model for electromigration-induced failure in metal interconnects under time 

independent stress is introduced in this chapter
1
. A single time-dependent parameter which can 

be represented as a real number is used to incorporate the accumulated effects of the stress into 

the reliability model.  

The mean time to failure (MTTF) or the median time to failure (MTF) are often used as 

metrics to characterize the reliability of an interconnect. Though the intended useful life of a 

component is often considerably less than the MTTF or MTF, these metrics are widely used 

characterize reliability.  Although most reliability assessments of electronic components are 

based upon an assumption of constant stress throughout the operating life of a component, stress 

is invariably highly time-dependent and this time dependence should be included in reliability 

models if accurate reliability results are to be obtained.   

Accelerated-stress lifetime testing is widely used for experimentally measuring reliability 

in the semiconductor industry. In most of the experiments, accelerated lifetime testing is based 

on constant stress.  Correspondingly, accelerated lifetime testing results are widely used to 

predict lifetime, e.g. MTF,  under a “normal” operating stress which is invariably assumed to be 

time independent.  Unfortunately, the actual stress is seldom time invariant.  Because of the 

highly nonlinear relationship between lifetime and stress, the assumption of time-invariant stress 

introduces large errors in lifetime predictions. As a consequence, systems are often over-

designed to assure acceptable reliability when the stress is time dependent or target reliability 

goals are not met when stress actually is nearly constant at an upper-stress bound.    

                     
1
 This work was supported by the National Science Foundation and the Semiconductor Research Corporation 



www.manaraa.com

5 

 

 

In most previous work, modeling of electromigration focuses on a statistic such as MTF 

rather than the Probability Density Function (PDF) of the failure time.  And even when the PDF 

is considered, there is not agreement amongst researchers about what PDF should be used to 

model the lifetime or how system parameters affect the functional form of the pdf. This lack of 

agreement is due, in part, to differences in the physical characteristics of the interconnects 

themselves associated with differences in grain sizes and interconnect geometries. 

 

2.1 Reliability Modeling 

 

In Black’s work [2], [3], a single analytical expression for the Mean Time to Failure and 

the Median Time to Failure, both denoted as MTF, was introduced.  Black did not appear to 

distinguish between these two statistics.  The distinction between these metrics is often not clear 

in the follow-on literature either and some authors use the term time-to-failure, TF, as another 

statistic to presumably characterize the same effects. To avoid possible confusion in this thesis, 

the abbreviations MTTF will be used to denote Mean Time to Failure and MTF to denote 

Median Time to Failure.  MTF and MTTF are both statistics of the lifetime of an interconnect 

which is a random variable characterized by a Probability Density Function f(tF) where tF 

denotes the failure time.   The failure time tF denotes the actual failure time of a device and is a 

random variable. Corresponding to any Probability Density Function (PDF) is the Cumulative 

Density Function (CDF) , F(tF), defined by  

  ( ) ( )
0

Ft

t

t
=

= ∫FF t f d t
                                     (2.1) 

F(tF) is a monotone nondecreasing function of  tF that equals  0 at time tF=0 and converges to 1 

as
Ft  → ∞  . Some authors prefer to work with the Reliability Function ( )F

R t  (alternatively termed 

the Survival Function) that is defined as  
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                   ( ) ( )1= −
F F

R t F t                  (2.2) 

Reliability is defined as the ability of a system or component to perform its required functions 

under stated conditions for a specific period of time. 

( )FR t is a monotone decreasing function 

       ( )FR t = 1, when tF  =0, 

       ( )FR t = 0, when tF ◊∞  

In this work we concentrate on F(tF) though trivially the R(tF)  results can be obtained from (2.2). 

The MTTF statistic is given by the expression 

              
( )

0

F F F
M T T F t f t d t

Ft

∞

=

= ∫
                (2.3) 

and the MTF statistic by the implicit expression 

                            ( )
0Ft =

= ∫
M T F

F F
0 .5 f t d t      

or equivalently by the explicit expression 

                                       ( )-1
M T F  =  F 0 .5                                  (2.4) 

To determine the median time to failure, the model that has been used almost exclusively for the 

past four decades that was introduced by Black in 1967 can be expressed as 

    (2.5) 

Black’s empirical expression for MTF due to electromigration [2] is usually modified slightly 

and is expressed as  

 

                                                 (2.6) 

aE
kT-N

0MTF=A J e
 
 
 

( ) ( )

∞



a

CRIT

-N E /kT

0 CRIT CRIT

J < J
MTF = 

A J-J e J > J
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where T is absolute temperature in K, J is the current density, and k is Boltzman’s constant.  All 

parameters in this expression are time-independent. In this expression, there are four 

process/material dependent model parameters, A0, JCRIT, N, and Ea. A0 is a material property and 

geometry dependent constant. JCRIT is the critical current density. JCRIT is around as 1 MA/ cm
2 

for aluminum [17]. N is a constant. The typically range of N is between 1 and 3. For aluminum 

and copper interconnects N=2 [3] is often used. Ea is the activation energy.  For aluminum 

interconnects Ea typically ranges between 0.7 eV and 0.9 eV.   

It is assumed that the amount of wear in the interconnect can be characterized by the 

time-dependent CDF, specifically, F(tF). Since the MTF satisfies the relationship   

                                                                    (2.7) 

the MTF is determined from the CDF. 

In this work, it will be assumed that the stress is time-dependent but for notational 

convenience it will be assumed that time is represented by a set of contiguous time intervals and 

that the stress is constant throughout each time interval. These time intervals scan be arbitrarily 

short if the stress varies rapidly with time or the time intervals can be long if stress remains 

relatively constant for long periods of time. It will be assumed that the same functional form of 

the CDF characterizes the failure time in each interval and that in the i
th

 interval, the stress is 

completely represented by a single “parameter” in that CDF and this “parameter” is the function   

( ) ( )a i
-N E /kT

0 i C R ITA J -J e  where Ji, A0, JCRIT, N, and Ti are constant throughout the i
th

 interval. It will 

be assumed that the CDF can be expressed using the lognormal distribution as [18] 

            (2.8) 

( )-1
M T F  =  F 0 .5

( )
( )

01

ln
, ,

F i

LNi F i N

t
F t F

µ
µ σ

σ

− 
=  

 
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where                      (2.9)

    

and where FN01 denotes the CDF of the Normal (0,1) random variable.  The parameter σ is a 

shape parameter of the distribution and ln(x) is the natural logarithm function and the parameter 

µ i denotes the stress level in the i
th

 interval. . It is assumed that if the stress is constant throughout 

the life of the interconnect, the CDF under two different stress conditions has the following 

property: 

                        ( ) ( )b a
≥ ∀ ≥

a b F F F
If   MTF >MTF     then  F t F t t 0

                   
(2.10)

                                       

Circuits are often designed to have an acceptable MTF under constant maximum stress at 

a given current density denoted as JMAX and a given temperature denoted as TMAX.  Typical 

values for JMAX and TMAX for the 0.45 nm technology node are 3 MA/cm
2
 [19] and 110 

0
C [20].  

These stress conditions are often interpreted as guard bands and power/thermal management 

algorithms are often established to guarantee that these guard band values are not exceeded with 

the obvious assumption that if operation is maintained constant at the guard band limit, an 

acceptable MTF will be obtained.  

CDF plots for five different constant stress conditions, characterized by the parameter µ, 

that are close to JMAX and TMAX based upon the lognormal distribution of (2.8) with shape factor 

σ=0.3 are shown in Figure 2.1.  The stress conditions are listed in Table 2.1 along with the 

corresponding MTF.        

 

 

 

( ) ( )( )µ a i
-N E /k T

i 0 i C R IT
= ln A J -J e
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Figure 2.1: CDF plots under constant stress 

 

 

Table 2.1 MTF in Different Constant Stress  

 

 

 

 

 

 

 

 

 

Current Density 

(J) (MA/cm
2
) 

Temperature 

 

µ MTF 

(years) 

3.3(J+10%J) 110
0
C+6

0
C 2.09 8.1 

3 110
0
C+6

0
C 2.37 10.7 

3 110
0
C 2.76 15.96 

3 110
0
C-6

0
C 3.17 23.8 

2.7 (J-10%J) 110
0
C-6

0
C 3.50 33 
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A graph is plotted to show the relation between stress and MTF under constant stress in 

Figure 2.2. 

 

 Figure 2.2 : MTF is decreasing with increasing stress 

 

The high sensitivity of the MTF to stress is apparent from these plots.  It can be observed 

that a 10% increment in current density and 6
0
C temperature increment causes a 50% reduction 

in MTF. Even if current stress is unchanged, a 6
0
C increment in temperature reduces the MTF by 

32%.  

Semiconductor manufacturers often give little information about the MTF of their 

components but internally the reliability of their products is of considerable interest.  Since little 

information is given about the MTF, there is almost no information available about how tightly 
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the MTF is controlled in products but this information should have a significant economic impact 

on the manufacturer of integrated circuits.  Since the MTF is stress dependent, the manufacturers 

control the MTF by establishing guard bands for temperature and these guard bands are 

incorporated in the power/thermal management circuitry.  But since there will be errors in the 

temperature sensors that provide input to the power/thermal management unit, these errors will 

cause a variation in the MTF.   

  In this work, it will be assumed that the goal of the manufacturer is to maintain an MTF 

that is within  ±10% of the nominal MTF and that temperature sensor accuracy must be 

established at a level that will keep the MTF within this ±10% window. Following the same 

approach that was used to obtain Figure 2.1, it can be shown that if the target MTF is 16 years 

and the current stress is constant at a nominal value of 3MA/cm
2
, the  temperature measurement 

accuracy required to keep the MTF within a ±10% window is  ±1.6
0
C.  Correspondingly, if the 

current density also changes by ±5% of the nominal current density,  then temperature should be 

measured with a ±0.5
0
C accuracy to meet the ±10% MTF window. It should be apparent from 

these examples that to measure reliability accurately, it is very crucial to precisely monitor the  

stress profile. 
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CHAPTER 3 -RELIEABILITY MODELING OF METAL INTERCONNECTS WITH 

TIME DEPENDENT  ELECTRICAL AND THERMAL STRESS 

 

In this chapter, a model is developed for the MTF when the electrical and thermal stresses 

are time variant. For notational convenience, it is assumed that these stresses are piecewise 

constant and that a sequence of time points, denoted as m

i i= 0
t  , denote times where the stress 

changes when m 1≥ .  The time t0 =0 denotes the “birth” time of the interconnect, that is, the 

time that a stress is first applied. If the stress remains constant throughout the use of the 

interconnect, then m=0 and existing models can be used to predict the MTF. When m>0, there 

are one or more changes in stress. The change in stress at any time point could correspond to a 

change in J, a change in T, or a change in both J and T.    The stress vector ST is defined as 

                      (3.1)

  

where 

                                                     (3.2)

       

and where it is assumed that 
m + 1

t =  ∞  and  
i C R I T

J J i> ∀ . These latter two assumptions are made 

strictly for notational convenience and neither is necessary.  It is assumed that in any stress 

interval, the CDF is equal to that which would be in effect had the same stress been applied at the 

translated time needed to maintain continuity of the CDF at the transition from the previous 

interval. This latter assumption is critical in what follows and can be interpreted as assuming that 

the amount of wear is characterized by the CDF.  This wear stress assumption can be expressed 

mathematically as  

( )

( ) ( )

( ) ( )

( ) ( )

 
 
 
 
 
  

0 0

1 1

m m

J t T t

J t T t
S T t  =  

...

J t T t

( )

( )

1

1

0

0

i i

i i

t t t i m

t t t i m

+

+

≤ < ∀ ≤ ≤

≤ < ∀ ≤ ≤

i i

i i

J t  = J for

T t  = T for
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            (3.3) 

where for all  ≤ ≤0 k m ,  

                            (3.4) 

                                     

where ( )k FF t  is the CDF in the interval 
k F k+ 1

t <  t t≤ and where ( )k0 F
F t is the CDF that 

corresponds  to a constant stress of  Jk and Tk throughout the life of the interconnect.  From this 

expression, it can be observed that the effects of the entire stress history in any interval tk<tF<tk+1 

is dependent only upon the function  Fk-1(tk) and thus only a single real number needs to be 

stored to predict the reliability at any point in time.  This number needs to be updated each time a 

transition is made to a different interval. It can also be observed that the sequence  ( )
1k -1 k

F t
k

∞

=

 is 

monotone and increasing with k. The pictorial representation of the algorithm given in (3.4) is 

shown in Figure 3.1.   

( ) ( )= ≤ ≤ ≤
F k F k F k+1

F t F t for t < t  t 0 k m

( ) ( )( )( )= ≤
-1

k F k0 F k k0 k-1 k k F k+1F t F t - t +F F t for t < t  t
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CDF= F0(tF) 

assuming Jk 

and Tk are 

constant,  �0 

= low stress

CDF of previous piecewise time interval, 

F0 (t1) is accumulated in evaluation of 

F1(t1)  in this transition

CDF=F1(tF)=F10 (tF-t1+F10
-1

 (F0 (t1)), this CDF depends 

on previous interval’s CDF. when  Jk and Tk  are 

representing high stress, �1

t0 t1 t2 t3 t4 t5

CDF=F2(tF)=F20 (tF-t2+F20
-1

 [F10 (t2-t1+F10
-1

 (F0 (t1))]), this CDF 

depends on previous interval’s CDFs, F0(tF) and F1 (tF). when  Jk and 

Tk  are representing low stress, �0

tF

 

      

     Figure 3.1: Modeling of time-dependent stress 

 

It is assumed that for a time period the stress is changing as low stress and high stress. In 

any time instant, tF, CDF, ( )F0F t is calculated  according the value  of  current density JK and 

temperature TK  at that specific time instant. In Figure 3.1, J0 and T0 correspond to low stress in 

first time interval, and J1 and T1 correspond to high stress in the next interval which are constant 

in that specific period. During the transition from low stress to high stress, the CDF of the 
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previous piecewise interval ( )0 1F t is accumulated to evaluate new CDF, ( )1 1F t . During the high 

stress application, in any time instant this new CDF, F1(tF)  is defined as, 

F1(tF)=F10 (tF-t1+F10
-1

(F0 (t1)).  In this way, in each time interval CDF is evaluated accumulating 

the effect of previous time interval’s CDF, which finally gives a continuous non decreasing CDF 

function.  Using equation (3.4) to model the time-dependent stress, four different time-dependent 

stress simulations were made. These time dependent stress intervals are shown in the Figure 3.2 

to Figure 3.5. 

 

Figure 3.2: 1% high stress and 99% low stress duty cycle 
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Figure 3.3: 10% high stress and 80 % low stress duty cycle 

    Figure 3.4: 50% high stress and 50 % low stress duty cycle 
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Figure 3.5: 80% high stress and 20 % low stress duty cycle 

 

Simulation results are shown in Figure 3.6 to Figure 3.9. Results are summarized in Table 

3.1. In all cases, there were 11 different stress intervals which correspond to 10 stress transition 

times and two different stress levels, one termed the high stress and the other termed low stress.  

All time-dependent stress tests started with the low stress condition and then toggled between the 

high stress and low stress levels at each stress transition time. The high stress condition 

corresponds to J=JMAX and T=TMAX as identified above. The low stress condition corresponded 

to J=0.85JMAX and T=TMAX-10
o
C. These low stress conditions are still likely much higher than 

what would be experienced in many applications. The lifetime of metal interconnect under time 

varying stress are observed in Figure 3.6 to Figure 3.9.  
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  Table 3.1 Different MTF in Time Variant Stress 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

High Stress 

 

Low Stress 

 

Current Density (Jmax) 

3 MA/ cm
2
 

 

Current Density  

(85% Jmax) 

2.55 MA/cm
2
 

 

Temperature (Tmax)   

110 
0
C 

 

Temperature(91% Tmax) 

110 
0
C-10

0
C 

 

µ (High stress) 

(2.77) 

 

µ(Low  

stress) 

(4.02) 

MTF 

(years) 

0% DC 100% DC 55.68 

1% DC 99% DC 54.46 

10% DC 90% DC 45.75 

50% DC 50% DC 26.68 

80% DC 20% DC 18.84 

100% DC 0% DC 15.96 
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Figure 3.6: CDF vs time when high stress with 1% duty cycle (DC) and low stress with 99 % DC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: CDF vs time when high stress with 10% DC and low stress with 90 % DC 
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Figure 3.8: CDF vs time when high stress with 50% DC and low stress with 50 % DC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: CDF vs time when high stress with 80% DC and low stress with 20 % DC 
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In the results shown in Figure 3.6, there was a 1% high stress and a 99% low stress with 

the first stress transition occurring at 9.9 years the second occurring at 10.0 years and with the 

high and low stress intervals remaining constant through the remaining stress transitions. The 

MTF under the constant high stress and constant low stress range between 15.96 years and 55.68 

years with the 1% time varying high stress corresponding to a MTF of 54.46 years.  In the results 

shown in Figure 3.7, there was a 10% high stress and a 90% low stress with the first stress 

transition occurring at 9 years and the second occurring at 10.0 years. This time varying stress 

has a MTF of 45.75 years. In the results shown in Figure 3.8, there was a 50% high stress and a 

50% low stress with the first stress transition occurring at 5 years and the second occurring at 

10.0 years. The MTF was 26.68 years.  In the results shown in Figure 3.9, there was an 80% high 

stress and a 20% low stress with the first stress transition occurring at 2 years and the second 

occurring at 10 years. The MTF was 18.84 years. 

It can be concluded from these simulations that including the time-varying stress when 

predicting the actual MTF can have a dramatic effect on the actual  MTF with well over a 300% 

change in the MTF with even a relatively modest time-dependent change in stress.   

  Also from the above results it is shown in Figure 3.10 that to maintain the MTF to within  

±10% of the target MTF, the temperature must be measured to within ±1.6
0
C under the 

assumption that current density is fixed to 3 MA/ cm
2
. The targeted MTF in this case is 16 years, 

to obtain ±10% of this MTF(14.4 years and , 17.6 years) with fixed current density, temperature 

increases from 110
0
C to 111.6

0
C and decreases to 108.6 

0
C respectively. Therefore, the accuracy 

of the temperature sensor has to be very high.   
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Figure 3.10: CDF vs time when MTF is ±10% of the target MTF, temperature is within ±1.6
0
C 

 

3.1 Conditional Reliability and Conditional MTF 

 The derivations in this work were made under the assumption that the time-varying stress 

conditions were known prior to putting a system into use. In actuality, the time-varying stress 

will depend upon how each specific system is used. Thus, there is some probability that the 

system will fail under the time varying stress conditions and this probability increases with the 

time that the system is used. It would be more useful to determine the conditional CDF or the 

conditional MTF under actual varying stress conditions if a real-time power/thermal 

management algorithm is adopted. In high-reliability systems, the probability of failure 

throughout the specified life of the system will be small and in these cases the previous analysis 

of the MTF will provide a close approximation to the MTF throughout the useful life of the 

system.  The conditional reliability is calculated using equation (3.4) and shown in Figure 3.11. 
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Figure 3.11: Conditional reliability function to measure conditional MTF 

 

If the metal interconnect is survived to time t1 and if ( )newR t is the conditional reliability 

at time t, where t1< t, the conditional reliability can be calculated as [22],  

                                         ( ) 1

1

( )

( )
new

R t t
R t

R t

−
=             (3.5) 

Once we evaluate ( )newR t , the previous reliability function, 1( )R t can be discarded. The new 

conditional MTF of the metal interconnect can be obtained in from new conditional reliability 

function in following way, ( ) 0.5new FR t =  and   1(0.5)
F new

t R
−=         (3.6) 

where 
F

t  is failure time.  

R(t) 
R

new
(t) 

t
1
 

MTF
1
 

MTF
2
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3.2 Equivalent Age Stress 

Often systems are designed under the assumption that the stress will be constant 

throughout the life of the system.  This term is called as nominal use stress. If the actual stress is 

more than the nominal use stress, the system will age more rapidly than under nominal use stress 

and if the actual stress is less than the nominal use stress, the system will age less rapidly than 

under normal use stress. When predicting the reliability of a system under time-varying stress, 

the sequence ( )
1k-1 k

F t
k

∞

=
 was used as an indicator of the wear and the only memory in the 

system required to predict stress in the interval tk<tF<tk+1 was Fk-1(tk).  But Fk-1(tk) may give little 

insight into whether the accumulative stress in this interval is larger or smaller than that under 

normal use.   The equivalent age stress will provide more insight into how the stress is affecting 

the aging of the system. If the nominal use stress is not time dependent and characterized by the 

CDF FNOM(tk) and the nominal MTF is given by 

            (3.7) 

then we can define the equivalent aging time at each time tAGE,k by 

 
        (3.8) 

And the normalized equivalent aging stress change, tEAS-NORM,k  by 

                         (3.9) 

  

There is a 1-1 relationship between the  equivalent aging time and the wear indicator Fk-1(tk)  or 

correspondingly between the normalized equivalent aging stress change and  Fk-1(tk).  Thus, 

instead of storing the single wear indicator variable  Fk-1(tk) to calculate the MTF, one can 

( ) ( )a NOM
-N E /kT

NOM 0 NOM CRIT
MTF =A J -J e

( )( ), 1 1
AGE k k k

∞∞

= =
= -1

NOM k-1 k
t F F t

,

1

1

AGE k

k

k

∞

∞

=

=

=
k

EAS-NORM,k

NOM

t -t
t

MTF
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alternatively store either the equivalent aging time or the normalized equivalent aging stress 

change.  The latter would be more useful in assessing the accumulative effects of the actual 

stress on the system. Whereas the sequence , 1
t

AGE k k

∞

=
 is monotone, the sequence 

1EAS-NORM,k
t

k

∞

=
 

can take on either positive or negative values. When  tEAS-NORM,k  is positive, the system is 

wearing faster than the nominal use system and when it is negative, the system is wearing slower 

than the nominal use system. The magnitude of this quantity is an indicator of how much faster 

or slower the system is wearing. 

3.3 Relation Between MTF and FIT 

Although the MTF is a statistic that characterizes the failure time or reliability of a 

device, the MTF is generally much longer than the useful operating life of an integrated circuit.  

Industry is often more concerned about the number of early failures of a component since the 

cost of returns during a short warranty period is based upon the early failures. For a given 

distribution, there is a known relationship between the number of early failures in any interval 

and the MTF. Thus, in reliability electronics applications, instead of the MTF, industry prefers to 

use the statistic  FIT (failures in time) as a measure of the failure rate. The FIT is defined as the 

hazard function in units of (1/ hours) x 10
9
 [18] and is given by the expression, 

             (3.10)

  
 

where f(tF) is probability density function and F(tF) is cumulative density function of the time to 

failure considered in the previous sections of this thesis. They are related by the well-known 

equation  

9( )
10

1 ( )

F

F

f t
FIT

F t
= ×

−
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    0

( ) ( )
Ft

F FF t f t dt= ∫
       (3.11) 

As discussed previously, the MTF (Median time to failure) can be expressed as 

                                                MTF= F-1(0.5)         (3.12) 

Assuming a lognormal distribution of the time to failure, f(tF) is given by the expression 

 

 

       (3.13) 

 

Then F(tF) is calculated using equation (3.11). Replacing f(tF) and F(tF) values in equation (3.10) 

the FIT values can be  calculated. Using equation (3.10) and equation (3.12), the relation 

between MTF and FIT can be obtained. This relationship is shown graphically for µ is varying 

from 1.61 years to 2.07 years and σ=0.35 in Figure 3.12 for three different time intervals. 

 

 Figure 3.12:  Relation between MTF and FIT in different values of experiment time  

 

2
ln1

( ) exp 0.5
2

F
F

F

t
f t

t

µ

πσ σ

 − 
= −     
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Some well-known properties of the relationships between the MTF and the FIT can be 

observed from Figure 3.12. The FIT values are decreasing with respect to ascending values of 

MTF and  FIT values increase with increments of the experiment time for a specific MTF value. 

At this stress level and with the specified shape factor, when the MTF is 5 years, the FIT at 

10000 hours is 14.5, at 11000 hours it is 42.7,  and at 12000 hours the FIT is 101.1.  The same 

plot is shown with a FIT log scale in Figure 3.13. 

 

   

 Figure 3.13 : Relation between MTF and log (FIT) in different experiment time  

 

 

3.4 Practical Considerations and Open Issues 

 From a practical viewpoint, good modeling of the lifetime of an interconnect in the 

presence of a large number of different stress intervals will require a large number of intervals.  

More realistically the accumulated “wear” at the end of the first stress interval will be very small 
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and, even if a very large number of stress intervals are present, the accumulated “wear” after a 

large number of stress intervals will also be small if the interconnect is to have good reliability. 

 The issue of what distribution best models the wear in an interconnect deserves some 

additional attention.  In the presentation of the previous sections, a lognormal distribution with a 

shape parameter of σ=0.3 was used as an example. Most discussions in the literature that do 

present measured electromigration results focus only on the MTF and do not address what 

distribution was used nor how well the MTF model fits the data. As is the case for accurate 

reliability predictions in the presence of constant stress, accurate reliability prediction in the 

presence of  time-dependent electrical and thermal stress requires not only good parameters in 

the MTF equations but good models for the distribution function as well.    
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CHAPTER 4 - RELIEABILITY MODELING OF METAL INTERCONNECT WITH 

ELECTRICAL, THERMAL AND THERMAL GRADIENT STRESS 

 

In this chapter, an empirical statistical model will be introduced that attempts to combine 

the effects of electrical stress, thermal stress, and thermal gradient stress (ETTG) on the 

reliability of interconnects. The purpose of this model is to obtain an estimate of the level of 

degradation in reliability that will occur in the presence of significant levels of combined ETTG 

stress and to obtain an estimate of the accuracy needed for on-chip temperature and temperature 

gradient sensors if they are used as part of a power/thermal management algorithm to manage the 

reliability of an integrated circuit. 

Though static thermal gradient stress is known to limit lifetime of an interconnect, there 

is little in the literature to suggest how this should be incorporated into a reliability model that 

jointly includes the effects of current stress, thermal stress, and thermal gradient stress.  Lacking 

such a model, we have empirically included the thermal gradient as a stress parameter along with 

temperature and current density by modifying the MTF equation of Black equation (2.6) as a 

separable function of J, T, and the thermal gradient ∆T as, 

         ( 4.1) 

 

The parameters in the polynomial equation are obtained by fitting experimental MTF 

measurements [10] to actual temperature gradients.  It will be assumed that the CDF can be 

expressed using the lognormal distribution as [18] 

                 

                                            (4.2) 

( ) ( ) ( )2

1 21 a T a T

∞


+ ∆ + ∆
a

CRIT

-N E /kT

0 CRIT CRIT

J < J
MTF = 

A J-J e J > J

( )
( )

01

ln
, ,

F i

LNi F i N

t
t

µ
µ σ

σ

− 
=  

 
F F
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where                                                                  (4.3) 

  

and where FN01 denotes the CDF of the Normal (0,1) random variable.  The parameter σ 

determines the steepness of the CDF in the region around tF = F
-1

 (0.5) and ln(x) is the natural 

logarithm function.  

Existing power/thermal management algorithms typically throttle the speed of operation 

when the temperature reaches a predetermined trigger level and this level is often based upon the 

assumption that the current density stress is maintained at some maximum nominal level, JNOM.   

By throttling the speed, the temperature can ideally be maintained at or below the trigger 

temperature, denoted as TNOM. The trigger temperature is typically established so that if the 

device is operated continuously at TNOM and the current is maintained continuously at JNOM the 

circuit will meet a target MTF. Some power/thermal management algorithms have a single 

temperature sensor and some use multiple on-chip temperature sensors. In the latter case, the 

power/thermal management algorithm will ideally keep the temperature at each sensor location 

at or below TNOM.   

With existing approaches to power/thermal management, thermal gradient information is 

not a part of reported speed throttling processes and if large temperature gradients are present, 

the temperature-based throttling will not be adequate for meeting target MTF goals.  If on-chip 

temperature gradient sensors are strategically placed on a die at locations where thermal 

gradients are likely to be most critical, the power/thermal management algorithm can be 

modified to also throttle speed whenever the thermal gradients meet a trigger gradient value.  

This trigger gradient is denoted as ∆TNOM. The analogous power/thermal management strategy 

would be to pick both TNOM and ∆TNOM so that if the device is operated continuously at the 

( ) ( )( )( )( )2

1 21 a T a Tµ + ∆ + ∆a i
-N E /kT

i 0 i C R IT
=ln A J -J e
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ETTG stress level of JNOM, TNOM, and ∆TNOM, then the circuit will meet a target MTF goal.  To 

implement such an algorithm, a model of the MTF that incorporates the ETTG stress conditions 

is needed as well as both temperature and temperature gradient sensors.   

Lacking an established model, we will use the empirical model of (4.1) which 

incorporates the ETTG stress parameters.  Since the MTF is quite sensitive to small changes in 

stress conditions, it is also necessary to determine the accuracy requirements for both the 

temperature sensors and the temperature gradient sensors. Now an estimate of the thermal 

gradient stress parameters, a1 and a2 in (4.1) is obtained. In [10], Nguyen et. el. studied the 

effects of thermal gradients on an AlSi(1%)Cu(.04%) interconnect with an accelerated lifetime 

test.  In their study, the temperature at the hot side of the interconnect was maintained at 202
0
C 

by a local heater and the temperature at the low side was adjusted in four separate tests using 

oven to create thermal gradients of 0, 0.09, 0.19, and 0.28
0
C/µm shown in Figure 4.1.  In these 

tests, the MTF decreased from 46.6h when there was no gradient to 41.8h, 19.8h, and 4.1h 

respectively with the larger thermal gradients mentioned in Table 4.1.   
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Figure 4.1 Arrangement to produce thermal gradient  

 

Table 4.1 : Different Temperature Gradient Conditions and Corresponding 

Time to Failure (TTF) [10] 

Condition  Heater Temp 

(Hot side) (
0
C )  

Thermal Gradient, 

∆T , (
0
C/µm) 

Oven Temp 

(Low side) (
0
C ) 

TTF 

 (hrs) 

Uniform - 0 202 46.6 

Tgrad1 202 0.09 177 41.8 

Tgrad2 202 0.19 152 19.8 

Tgrad3 202 0.28 127 4.3 
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With these measurements and the assumption that the MTF is a separable function of J, 

T, and the gradient ∆T, the second-order polynomial fit parameters a1 and a2 of (4.1) can be 

estimated.  An estimate of these parameters is a1=-2.629 and a2=-2.088. 

These fit parameters are used to predict the MTF under different ETTG conditions in a 

state of the art process. Since it is recognized that the metal characteristics may be somewhat 

different and the assumption of a separable function for the MTF is strictly empirical, there will 

be some model errors but lacking experimental data for predicting the effects of thermal 

gradients, the results obtained should at least be indicative of what could happen in these 

processes when thermal gradients are present. Typical values for stress variables JNOM and TNOM 

for the 0.45 nm technology node are 3 MA/cm
2
 [19] and 110 

0
C [20] respectively.  Using these 

stress variables, and assuming a lognormal distribution with shape factor of σ=0.3, with typical 

values for A0 and Ea in (4.3), we obtain the CDF plots shown in Figure 4.2 under the four 

gradient conditions 0, 0.09, 0.19, and 0.28
0
C/µm. The corresponding MTF for the four gradient 

conditions are summarized in Table 4.2.   
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Figure 4.2: CDF plots under different ∆T in TNOM and JNOM conditions 

 

 

From these results it is observed that under a constant ambient temperature and current 

density condition, when the thermal gradient is increased from 0
0
C/µm to 0.28

0
C/µm, the MTF 

has decreased by factor of approximately 10. As expected, this is the same relative decrease that 

was reported in [10]. 

Table 4.2. MTF in Different ∆T with Normal Stress 

 

Current 

Density (J)  

3 MA/cm
2
  

(under Temp 

Gradient (∆T) 
0
C/µm 

µ MTF 

(years) 

Temperature 

(T) 

110 
0
C 

0 2.76 15.8 

0.09 2.47 11.8 

0.19 1.91 6.8 

0.28 0.46 1.6 
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A comparison will now be made with the degradation in reliability due to thermal 

gradients with changes in reliability due to changes in electrical or temperature stress. In 

previous chapter the effects of changes in electrical and thermal stress were considered using the 

distribution function that differed from that used here with the exception that temperature 

gradient effects were ignored (i.e. with a1=a2=0). These results are repeated in Figure 4.3 and the 

results are compared numerically in Table 4.3.  Comparing the results in Table 4.2 and Table 4.3, 

it can be seen that a gradient of 0.09
 0

C/µm will cause about the same decrease in reliability as an 

increase of temperature of 6
0
C in the absence of thermal gradients. 

 

 

 

 

    Figure 4.3: CDF plots under different T and J in absence of ∆T 
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Table 4.3. MTF in Different Stress in Absence of ∆T 

 

Current Density 

(J) (MA/cm
2
) 

Temperature 

(T) 
0
C 

µ MTF 

(years) 

3.3(J+10%J) 110
0
C+6

0
C 2.09 8.2 

3 110
0
C+6

0
C 2.37 10.8 

3 110
0
C 2.76 16 

3 110
0
C-6

0
C 3.17 23.8 

2.7 (J-10%J) 110
0
C-6

0
C 3.50 33 

 

Figure 4.4, Figure 4.5 and Figure 4.6 compare the reliability under various combinations 

of the ETTG stress parameters. The results from these plots are summarized in Table 4.4, Table 

4.5, and Table 4.6. 

 

 

Figure 4.4: CDF plots under different T, J when ∆T = 0.09
0 

C/µm 
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Table 4.4. MTF in Different Stress when ∆T=0.09
0 

C/µm 

 

Current 

Density (J) 

(MA/cm
2
) 

Temperature 

(T) 

µ MTF 

(years) 

3.3(J+10%J) 110
0
C+6

0
C 1.80 6 

3 110
0
C+6

0
C 2.08 18 

3 110
0
C 2.47 11.8 

3 110
0
C-6

0
C 2.87 17.8 

2.7 (J-10%J) 110
0
C-6

0
C 3.20 24.6 

   

 

     Figure 4.5: CDF plots under different T,J when ∆T = 0.19
0 

C/µm 
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Table 4.5. MTF in Different Stress when ∆T=0.19
0
 C/µm 

 

 

Current Density 

(J) (MA/cm
2
) 

Temperature 

(T) 
0
C 

µ MTF 

(years) 

3.3(J+10%J) 110
0
C+6

0
C 1.24 3.4 

3 110
0
C+6

0
C 1.52 4.6 

3 110
0
C 1.91 6.8 

3 110
0
C-6

0
C 2.32 10 

2.7 (J-10%J) 110
0
C-6

0
C 2.64 14 

 

 

         Figure 4.6: CDF plots under different T,J when ∆T = 0.28
0 

C/µm 
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Table 4.6. MTF in Different Stress when ∆T=0.28
0 

C/µm 

 

Current 

Density (J) 

(MA/cm
2
) 

Temperature 

(T) 

µ MTF 

(years) 

3.3(J+10%J) 110
0
C+6

0
C -0.21 0.82 

3 110
0
C+6

0
C 0.07 1.08 

3 110
0
C 0.46 1.6 

3 110
0
C-6

0
C 0.87 2.38 

2.7 (J-10%J) 110
0
C-6

0
C 1.19 3.32 

 

 

From these simulation results, it can be observed that the MTF decreased from 33 years 

in the minimum stress condition of J=2.7MA/cm
2
, T=104

0
C, ∆T=0

0
C/µm to 0.82 years in the 

maximum stress condition J=3.3MA/cm
2
, T=116

0
C, ∆T=0.28

0
C/µm.  This change in stress 

conditions is rather modest yet the change in reliability as characterized by the MTF is a factor of 

approximately 40. More importantly, it can be seen that each of the ETTG stress factors 

contribute significantly to the degradation in reliability. 

The question naturally arises; How large of thermal gradient stresses are likely to occur? 

Though not quantized, thermal gradient stress in the 0.05
0
C/µm has been reported in several 

papers focusing on hot spots. Other work, including that in [10] considers larger gradients. Lloyd 

[21] recently suggested thermal gradients well in excess of 1
0
C/µm “will be found”. Much of the 

reported thermal gradient information has focused on single-core processors.  With multi-core 

processors now common, with increases in the number of cores, and with projections for 

increasing the total power dissipation on processors by a factor of 4 in the next few years while 

maintaining approximately the same die area, much larger thermal gradients can be expected and 

these thermal gradients will likely play increasingly important roles in the reliability of 

interconnects. 



www.manaraa.com

40 

 

 

4.1 Accuracy Requirements for Temperature and Temperature Gradient Sensors 

If power/thermal management algorithms use measured temperature and in the future, 

measured temperature gradient information to throttle operating frequency for the purpose of 

meeting reliability targets, the question naturally arises about how accurately these 

measurements need to be made. 

 It was shown in previous chapter that to maintain the MTF to within  ±10% of the target 

MTF, the temperature must be measured to within ±1.6
0
C.  This requirement was established 

under the assumption that thermal gradients are not contributing to degraded lifetime. Using the 

lognormal model discussed above, it can be shown that if there are no errors in temperature 

measurement, and if a trigger thermal gradient of 0.2
0 

C/µm is established, then the accuracy of 

the thermal gradient sensor must be 0.011
0
C/µm to maintain ±10% accuracy in the MTF as 

shown in Figure 4.7.  

 

 

 

 

 

 

 

 

 

Figure 4.7: CDF vs time when MTF is ±10% of the target MTF under fixed current density and 

temperature measurement and temperature gradient is within ±0.011
0
C/µm 
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 As shown in Figure 4.7, the targeted MTF in this case is 6.1 years when current density, 

J=3 MA/cm
2
, temperature, T=300

0
C and temperature gradient ∆T = 0.2 

0 
C/µm. To obtain ±10% 

of this MTF (5.49 years and 6.7 years) with fixed current density and temperature, temperature 

gradient increases from 0.2 
0
C/µm to 0.211 

0
C/µm and decreases to 0.189 

0
C/µm respectively. 

Therefore, the accuracy of the temperature sensor gradient sensor also has to be very high. 

If the temperature gradient is measured by taking the difference of two temperatures that 

are 10 µm apart, the temperature difference must be accurate to 0.11
0
C to maintain ±10% 

accuracy in the MTF. Practically, some of the measurement error budget should be allocated to 

the temperature sensor and some to the temperature gradient sensor.    

Therefore, to maintain the ±10% accuracy in the MTF, if the temperature accuracy is 

increased to ±1.2
0
C, the temperature gradient measurement could be reduced to 0.003

0
C/µm and 

the corresponding temperature difference accuracy to 0.03
0
C. At this stage, whether it is 

ultimately practical to maintain accuracy of a target MTF that is within ±10% of the target MTF 

is not clear.  Unless some major breakthrough occurs in the design of temperature sensors, a 

single point temperature calibration during production testing will be necessary.  The overall 

accuracy of the calibrated temperature sensor will be the sum of the accuracy of the calibration 

temperature and the accuracy of the temperature sensor itself.  In existing production test flows, 

it is difficult to measure the calibration temperature at a sensor point on the silicon wafer to 

much better than ±1
0
C. This places a lower bound on the accuracy of the temperature sensor.  So, 

if the temperature sensor accuracy requirement is ±1.2
0
C, the accuracy of the temperature sensor 

circuit itself must be at the ±0.2
0
C level which is achievable.  Since the gradient sensor depends 

on temperature difference rather than an absolute temperature, reasonable performance of a 

temperature gradient sensor may be achievable without calibration. 
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CHAPTER 5 – CONCLUSION 

 

Silicon wears out under normal stress. Existing approaches to reliability modeling that 

are “silent” about the reliability issue and that ignore the actual time-dependent stress come at 

the expense of dramatic degradation in the tradeoffs between performance and reliability in 

integrated circuits that manufactured today. In this work a time-dependent stress model has been 

introduced for predicting reliability of electromigration-sensitive metal interconnects. The stress 

is defined by a single parameter µ which is a function of temperature, T, current density, J and 

temperature gradient, ∆T. By varying T, J and ∆T, a set of different stress values were generated 

to predict the median time to failure (MTF) of the metal interconnect.  

It is observed that inclusion of the time-dependent stress in the prediction of reliability 

can dramatically improve the accuracy of lifetime predictions.  Simulation results showed over a 

300% improvement in lifetime prediction accuracy can be achieved by including the time-

varying stress in the reliability modeling  when considering even a modest time-varying stress 

situation. The results would be even more dramatic under many realistic use conditions.  If real-

time stress history is monitored throughout the life of a part and used to establish dynamic stress 

guard bands, significant improvements in performance will often be possible without 

compromising target reliability of a system.   It was also shown that to achieve ±10% accuracy of 

the MTF under constant stress, the power/thermal management circuit that uses temperature 

measurements to trigger throttling requires accuracy of the temperature sensor at the ±1.6
0
C 

level.  

It was also observed that thermal gradients due to joule heating or due to other factors 

contribute to stress and in the presence of electrical and thermal stress, thermal gradients  

significantly contribute to degradation in reliability as well even under constant stress conditions.   
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The enhanced reliability degradation due to thermal gradients in the presence of electrical and 

thermal stress is likely to get much worse as power density increases in next-generation systems.  

By incorporating the output of a number of strategically placed thermal and thermal gradient 

sensors in the power/thermal management algorithm, significant improvements in reliability can 

be achieved while still meeting target reliability goals. Good accuracy on the temperature sensors 

and the temperature gradient sensors is needed if tight MTF goals are to be met. With increases 

in the number of cores in many microcontroller systems, and with projections for increasing the 

total power dissipation on processors in the next few years while maintaining approximately the 

same die area, much larger thermal gradients can be expected and these thermal gradients will 

likely play increasingly important roles in the reliability of interconnects. 
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